Overview: Advanced Materials & Manufacturing Development at NETL's Research and Innovation Center

David Alman

Associate Director for Materials Engineering and Manufacturing Office: 541-967-5885 Mobile: 541-979-7007 Email: <u>David.Alman@netl.doe.gov</u> <u>https://netl.doe.gov/</u>

April 5, 2023

The National Laboratory System

NATIONAL ENERGY

The National Energy Technology Laboratory

Organization Snapshot

MISSION

Driving innovation and delivering solutions for an environmentally sustainable and prosperous energy future:

- Ensuring affordable, abundant and reliable energy that drives a robust economy and national security, while
- Developing technologies to manage carbon across the full life cycle, and
- Enabling environmental sustainability for all Americans.

VISION

To be the nation's premier energy technology laboratory, delivering integrated solutions to enable transformation to a sustainable energy future.

MAJOR INITIATIVES

- Decarbonization & Carbon Management
- Environmentally Sustainable Supply Chains
- Integrated Energy & Industrial Systems
- Advanced Data & Computing Solutions for Applied Energy Challenges

3 RESEARCH LABS & 2 STRATEGIC OFFICES

- One of 17 DOE national laboratories
- One of three applied research
 national labs
- Government owned & operated
- **1000+** R&D projects in 50 states
- \$5.0B total award value
- **\$1.3B** FY23 budget

IMPLEMENTS R&D PROJECTS FOR DOE'S OFFICES OF:

- Fossil Energy & Carbon Management
- Energy Efficiency Renewable Energy
- Electricity
- Cybersecurity, Energy Security, & Emergency Response
- Manufacturing, & Energy Supply Chains
- Grid Deployment
- Clean Energy Demonstrations

An Active Portfolio from Concept to Market Readiness

600+ partnerships with industry, academia, and gov't agencies

1000+ research and development projects nationwide

Partnering with NETL

The TOOLBO X

- Cooperative Research and Development Agreement (CRADA)
- Contributed Funds-In Agreement (CFA)
- Memorandums of Understanding (MOU)/ Memorandums of Agreement (MOA)
- Interagency Agreements (IAA)

- Interinstitutional Agreements (IIA)
- Small Business Innovation Research (SBIR) & Small Business Technology Transfer (STTR) Programs
- Unsolicited Proposals (USP)
- Non-disclosure Agreement (NDA)
- Funding Opportunity Announcement (FOA)

Available Technologies

- NETL's technology portfolio contains a broad range of innovations that have resulted from research
- Technologies and intellectual property available for licensing on NETL's website

Available Technologies:

https://www.netl.doe.gov/business/tech-transfer/available-technologies

Funding Opportunity Announcement (FOA)

- NETL uses FedConnect.net, Grants.gov and SAM.gov to post FOAs
- Proposals and applications are only accepted electronically through FedConnect.net or Grants.gov

Funding Opportunities:

https://www.netl.doe.gov/business/solicitations

Core Competencies & Technology Thrusts

Materials Engineering & Manufacturing

Soft materials, Engineered particles, Advanced alloys, Composites, Coatings, & Ceramics

Materials Engineering & Manufacturing

Key Facilities

Advanced Alloy	Functional Materials	Carbon Materials	Advanced Sensors
Signature Center	Development Laboratories	Manufacturing Facility	Development Laboratories
Liquid metals processing laboratory, thermo-mechanical processing laboratory, and severe environment corrosion & erosion research laboratories Enables NETL and partners to pilot alloy solutions at scales that readily translate to industrial practice	 Full suite of materials synthesis, fabrication and testing capabilities for developing designer functional materials for energy applications Enables development and testing of targeted and rationally designed functional materials in ideal and realistic environments 	Synthesis and processing capabilities for producing carbon nanomaterials and other carbon materials for incorporating into products for evaluation Allows NETL and partners to develop and take new carbon materials to market	Capabilities for fabricating long single crystal fiber optics, depositing functionalized thin films, and developing distributed interrogation techniques. Enables the development of distributed harsh environment distributed fiber optics sensors

Computational Materials Capabilities

COMPUTATIONAL RESOURCES AVAILABLE FOR MULTI-SCALE MATERIALS MODELING AND DATA SCIENCE

Center for Computational Science and Engineering - JOULE 2.0

- At 3.6 petaflops JOULE is the 10th fastest supercomputer within DOE National Laboratories.
- This provides NETL and partners with highperformance computational power to solve challenges in energy and other sectors.

Center for Artificial Intelligence and Machine Learning - WATT

 Links 104 GPUs with 19
 petabytes of storage to provide unparalleled opportunities for the use of AI/ML to enable scientific discovery and R&D acceleration.

NATIONAL ENERGY TECHNOLOGY

ABORATORY

Impact & Innovation

Materials Engineering & Manufacturing: Enabling Advanced Technologies

NETL'S FAMILY OF BASIC IMMOBILIZED AMINE SORBENTS NETL DEVELOPED REFRACTORY **NETL'S ALLOY HOMOGENIZATION** Low-cost materials for gas and water purification applications COMPUTATIONAL TOOL. **BRICK FOR GASIFICATION Critical Steam Turbines** SiO₂ wal Specified heat-treatments: Special Metals: ٠ ESR/VAR 10,000 lb

-acrylamide/SiO₂ HYDROGEL-BASED

Polyamine-triepoxide/SiO Monolith-BASED

Separate CO₂ from flue gas, REE from process & waste streams. Pb and other contaminates from water.

- Licensed to Harbison-Walker. commercially produced as Aurex 95P.
- NETL technology doubled refractory service life. Used in nearly every slagging gasifier world-wide.

15 R&D 100 Awards

(2008-2022)

Enabling technology for Advanced Ultra-Super

- superalloy ingot
- GE: $\frac{1}{2}$ actual size cast valve body for an A-USC turbine 18,500 lb. superallov casting

NETL'S CATALYSTS FOR CONVERSION OF CO2 INTO VALUE-ADDED PRODUCTS

CARBON CAPTURE MEMBRANES

- NETL's thin film composite membrane for post-combustion carbon capture outperforms any commercially available polymer membranes (CO_2 permeance of > 4200 Gas Permeance Units (GPU) and CO_2/N_2 selectivity of >30 under lab conditions).
- Produced through scalable role to role manufacturing.

Alloy Development Research & Capabilities

Affordable, Durable Alloys: Integrated Materials Engineering Approach: Computational Materials Engineering Coupled with Manufacturing at Scale and Performance Assessment at Condition.

- ✓ Aluminum ✓ Steels
 - Copper
 ✓ Superalloys
- ✓ High Entropy Alloys (HEAs)
 ✓ Refractory Alloys
- ✓ Design & Development
 ✓ Manufacturing

Design & Discovery

Assessment at Condition

U.S. DEPARTMENT OF

- Air Induction Melting: up to 300 lbs
- VIM: 10, 50 and 500 lbs
- Vacuum Arc Remelt/Electro-Slag Remelt VAR/ESR: 3 to 8 inch diameter crucibles

Thermo-Mechanical Processing

- Heat-treatment furnaces:1650°C, inert atmospheres and controlled cooling.
- Press Forge: 500 Ton
- Roll mills: 2 and 4 high configuration
- Extrusion Press: 800 Ton (on-line CY24)

Conventional casting Non-Uniform Microstructure

NETL-modified casting Uniform Microstructure Modified cast alloy equivalent performance to wrought alloys

Outcomes: alloys with superior performance for Energy, Aerospace, Automotive, Defense and Biomedical applications.

NETL Fe-9Cr Alloy with an Increase Temperature Capability of ~50oF for this important class of steel.

Sensors for Critical Infrastructure & Extreme Environments N

Advanced Sensors for Energy Efficiency, Safety, Resilience, and Sustainability

- Monitor systems and conditions
- Improve performance & efficiency
- Enhance reliability & safety
- Temp, acoustics, chemical, gas, corrosion
- Composite nano-materials, thin films & fiber optics, sensor devices development

- **Multiple Sensor Platforms**
- **Distributed Fiber Optics**
- Surface Acoustic Wave
- Electrochemical
- LIBS
- Raman OFS Au/SiO₂ Coated LIBS (240-nm)

ECS

Turbines: Real-time fuel composition and combustion temperature for improved service life and efficiency

SOFCs: Fuel

gradients for

and efficiency

temperature Fuel

Cell

concentration &

improved lifetime

N O

GENER

Nuclear: Core monitoring and molten salt temperatures for reactor fuel efficiency & reactor safety

NATIONAL

TECHNOLOGY

ENERGY DELIVERY & STORAGE

Pipelines: Monitor corrosion, gas leaks, T, acoustics to predict/prevent failures. NG, H₂, CO₂

.S. DEPARTMENT OF ENERGY

Grid: Transformer, fault detection, state awareness

powerline failure prediction, **Subsurface:** Wellbore integrity, failure prediction, leak detection. Geologic storage of CO_2 , H_2/NG , or abandoned wells.

Carbon Capture – Sorbents & Membranes

Robeson's 2008

upper bound plot

CO₂ permeability (Barrers)

Developing novel materials and processes to reduce the cost of carbon capture

Hollow Fiber

CO₂ SEPARATION MEMBRANES

NETL roll-to-roll fabrication

HOLLOW FIBER THIN FILM COMPOSITES

NETL's hollow fiber membrane supports have ultra-high permeance, small surface pore size, and resistance to mild solvents – an ideal combination for thin film composites

NETL's membrane flue gas test unit at the National Carbon Capture Center, for longterm stability testing under real conditions including moisture and contaminants

Catalytic Carbon Conversion

Enhanced Catalytic CO₂ and Natural Gas Conversion Techniques

• Microwave Conversion

Microwave reactors use electricity to produce carbon-neutral H₂ and CO (syngas) with record setting energy efficiency.

- Impact:
 - Sustainable use of natural gas and captured CO₂ to produce carbon neutral H₂ and syngas.
 - Allow development of modular reactors for ondemand chemical production.

Pre-pilot Scale Microwave Demonstration

• Electrochemical Conversion

Advanced materials synthesis atomic-level computational modeling develop high activity catalysts that replace expensive precious metals. Prototype reactors validate performance at industrially-relevant conditions.

Carbon Materials Manufacturing

- **NETIONAL** ENERGY TECHNOLOGY LABORATORY

Manufacturing Graphite from Waste Carbons and Blends

Low-temp Catalytic Graphitization:

- Converts waste coal, waste plastic, & biomass to graphite.
- Works w/multiple forms of coal waste & carbon waste
- Waste blends will be investigated
- Lowers Process Intensity:
 - Temp ~ 1500 C
 - Time ~ 3 hours
- Degree of Graphitization > 90%
- Produces Battery Grade Graphite

Graphitized Powder River Basin Coal Char

5(1000

25

30

35

20 (degree)

40

45

20

1500

2000

Raman shift (cm⁻¹)

2500

3000

3500

Carbon Waste & Blends

.ABORATORY

Utilization of Enhanced Carbon Materials

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Carbon Electronics
- Memristor Computer Memory Devices
- > Capacitors
- > Electrodes

Benefits:

- Atomically thin dielectric materials
- Lowering costs & onshoring manufacturing
- Scalable manufacturing process
- Enhanced Performance

Cement & Concrete Composites

Coal-derived graphene nanoflake in cement/concrete formulations:

- Increases compressive and flexural strength by 15-35%
- Reduces porosity by 35% and permeability by 100%,
- Improves durability by reducing penetration of water and corrosive salts into cement/concrete by ~65%

REE and CM from Waste Streams

Characterize domestic coal throughout its lifecycle to optimize as a resource:

- Reduce cost of coal ash disposal/recycling
- Increase usage in materials (concrete, drywall, etc.)
- Reduce carbon footprint

Opportunity to use for identifying inefficiencies, vulnerabilities and threats along supply chains

• Natural disasters, economic, environmental, etc.

Geodatabase containing over 90,000 records spanning:

- 2168 mines
- 636 power plants
- 85,072 domestic coal deliveries

VISIT US AT:

www.NETL.DOE.gov

www.NETL.DOE.gov/onsite-research/materials

CONTACTS

DAVID ALMAN

ASSOCIATE DIRECTOR FOR MATERIALS FUNCTIONAL MATERIALS TEAM ENGINEERING AND MANUFACTURING

OFFICE: 541-967-5885 MOBILE: 541-979-7007 **EMAIL:**

DAVID.ALMAN@NETL.DOE.GOV

MARISA ARNOLD-STUART

STRUCTURAL MATERIALS TEAM SUPERVISOR

OFFICE: 541-967-5809

MOBILE: 541-979-1421

EMAIL: MARISA.ARNOLD@NETL.DOE.GOV

DARRYL SHOCKLEY

DAVID BATTAGLIA

OFFICE: 412-386-9298

MOBILE: 412-515-5071

SUPERVISOR

EMAIL:

MATERIALS CHARACTERIZATION TEAM SUPERVISOR

OFFICE: 304-285-4691

MOBILE: 304-291-0044

EMAIL: DARRYL.SHOCKLEY@NETL.DOE.GOV

